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SUMMARY 

The present  report  contains  an  attempt t o  improve the  accuracy  of an 
automatic  interceptor  flying a lead-collision  course  against a maneuvering 
target .  For t h i s  improvement, the  prediction  equations  that  provide  the 
interceptor 's  guidance were modified  by  incorporating terms of  second 
order to   predict   the   future   locat ion of a s teadi ly  maneuvering ta rge t .  
"he interceptor commands derived from the second-order  prediction equa- 
t ions  a l low  the  interceptor   to   f ly  a s t r a igh t   l i ne  course  against a ta rge t  
flying  with  constant  acceleration. The s t a b i l i t y  of the  system i s  studied 
by means of an  analog computer. The system  accuracy was evaluated i n  terms 
of  rocket miss and i s  compared  on t h i s  basis with  the performance  of an 
interceptor  with commands derived from a first-order  prediction scheme. 
The comparison covers  cases of unlimited and l imited  interceptor  acceler-  
ation  capability,  constant and pulse  acceleration  target maneuvers, and 
variations  in  rocket speed. 

INTRODUCTION 

i 

! 

The present  report i s  par t  of a f l i g h t  and  analog computer study  of 
the   f ina l   a t tack  phase of automatic  interception  currently  being conducted 
a t   t h e  Ames Aeronautical  Laboratory of the  NACA. The i n i t i a l  work (ref. 1) 
concerned improvements in  tracking  accuracy and  system s t a b i l i t y  of an 
interceptor  f lying a pursuit  course. The work was continued i n   r e f e r -  
ences 2 t o  4, where improvements i n  system s t a b i l i t y  of an interceptor I 

flying a lead-collision  course  against a nonmaneuvering ta rge t  were I 

reported. 
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In  a pursuit  course, where an   a i rp lane   t r ies   to  keep fixed guns . 
pointed at a t a rge t   fo r  a protracted  period of time,  the system  accuracy 
can  be  described i n  terms of the  tracking  accuracy of the  interceptor. 
I n  a col l is ion course,  whether the  interceptor 's   rockets  hit  or miss the 
ta rge t  depends on the  interceptor 's  heading  and posit ion at the  single 
instant  of f i r ing ,  and the  tracking  accuracy a t  times  other  than  firing 
time is  much less important  than it i s  i n  a pursuit  course. However, 
although  the  tracking  accuracy  requirements  of a rocket-firing  interceptor 
on a collision  course are low throughout most of an  attack,  the geometry 
computing accuracy  requirements  are  high. 

- 1  
I .  

The  components of a predicted miss are  calculated from measured and 
computed geometric  quantities. The computation i s  done by  an  attack com- 
puter which takes in to  account the  present  range and bearing  of  the  target 
from the  attacker,  and how the range and bearing change with  time. On 
the  basis  of t h i s  information and the knowledge of the  distance and direc- 
t ion  that   the   rockets  w i l l  t rave l  between the  t ime  they  are  f ired and the 
time  they  should h i t   t he   t a rge t ,   t he  computer predicts  by how  much the 
rockets will miss the  target .  This predicted miss i s  converted in to  com- 
mands for   the   au topi lo t  so t o  modify the heading  of the  a i rplane  as   to  
reduce the  predicted miss t o  zero. 

Since  the  actual,  not  predicted,  rocket miss i s  the  desired  cri terion, 1 

the  accuracy  of a system depends not on ly  on how well  the  airplane  follows 
i t s  commands, but   a lso on the   qual i ty  of prediction. Here the  quali ty of 
pred ic t ion   re fers   to   the   sor t  of  assumptions  underlying i t s  computation. a 

In current  fire-control  systems,  for  instance,  first-order  prediction i s  
used; t ha t  is, the  miss i s  predicted on the  assumption tha t   the   t a rge t  
w i l l  continue t o  maintain i t s  present  heading u n t i l  impact time. If the 
ta rge t  maneuvers, the  rockets  actually will miss the  target  even though 
the   a imlane  is  f lying so as t o  keep the  predicted miss zero. It i s  clear  
t ha t  improvement i n  radar and control system dynamics w i l l  not  substan- 
t ial ly change th i s   r e su l t .  A modification must be made to   the  predict ion.  

Modifying the  prediction  equation  has  not been the  usual method 
adopted i n  designing  interceptors  for  use  against maneuvering targets .  
Since in   f i rs t -order   predict ion a steady  prediction  lag i s  introduced  by 
a s teadi ly  maneuvering target,   the  control systems  approach  has  suggested 
that  various amounts of integration  be added to   t he   au top i lo t  commands. 
Experience, however, indicates  that   the  addition of  even  varying amounts 
of  integration-decreases  the  interceptor system stability without satis- 
f ac to r i ly  improving the chances  of h i t t ing   the   t a rge t .  Another method 
of  reducing  the  steady  error i s  t o  attempt  input  differentiation  (e.g., 
see   ref .  5 )  which -can be  applied  successfully  in  pursuit-course problems 
where s imi l a r   f i na l  geometry recurs from run t o  run, and the problem 
depends much less on time.  This method, however, w i l l  not  be  successful 
when appl ied   to  a collision  course  unless  the system  gains a re  scheduled 
i n  a rat ional  manner. 

_ _  .... -.. ,, - . . .. "?q d 
* .  - . "  .". .1- 
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A 

The simplest way t o  schedule  the  gains i s  t o  determine t h e i r  
dependence on the  geometry  of the  par t icular   a t tack.  But the  airborne 
determination of t h i s  dependence i s  j u s t  what i s  accomplished i n   t h e  non- 
maneuvering case  by  the  first-order  prediction of miss. In the  same  way, 
a higher  order of prediction can  be made i n   t h e  computation  of miss t h a t  
 rill take  into  accomt  target  maneuvers with  reasonable  success. 

The present  report summarizes some work  done along  these  lines. A 
second-order  equation of prediction i s  derived,  and  autopilot command 
equations  are  obtained from it. The character is t ics  of the   resu l t ing  
path of the  interceptor (which is  a straight  l ine,   regardless of the  tar- 
get  acceleration,  as  long as it i s  constant)  are compared with  those  of 
the  path of the  interceptor  result ing from first-order  prediction. The 
accuracy of two interceptor systems which d i f fe r   on ly   in   the i r   p red ic t ion  
and command equations i s  compared on the   basis  of "actual" miss by  resul ts  
of  analog  simulation. It i s  shown tha t ,   i n   con t r a s t   t o   t he  system  under 
f i rs t -order  guidance, the second-order  system can be  designed t o  perform 
successfully  against   targets  in  steady g turning maneuvers. Comparisons 
between first- and  second-order  predictions  also  are made t o  show the 
effect  of limiting  the  attacker's  maneuverability, and the ef fec t  of 
increasing  the  average  speed  of  the  attacker's armament. 

'The effects  of additive  input  noise on the  operation  of  the system 
have  been  ignored in   t h i s   s tudy .  The present  report  primarily  specifies 
the  geometric dependence of the  various  terms of the  a t tack computation, 
a dependence tha t  will be common t o  a l l  systems that t r y   t o  accomplish 
the same task. Furthermore, it seems des i r ab le   t o  know whether or not a 
conceptual scheme w i l l  work and what a r e  i t s  inherent  limitations  apart 
from considerations of noise  before  optimization of a system is  attempted. 
The answers to  these  questions can  be  ascertained  only  by such a study as 
is  contained  herein. 

E 

L- F 

.. 

NOTATION 

azimuth position  angle between radar antenna  and airplane 
(sketch  (b)),  radians 

as superscripts o r  subscr ipts   e i ther   different ia te  between 
attacker,  earth, or target  coordinate systems o r  distinguish 
an  attacker  property from tha t  of the  target   (as  Va i s  
attacker  speed) 

1 

elevation  position  angle between radar antenna  and airplane 
(sketch (b) ) ,  radians 

distance  traveled  by  the  rocket  relative  to  the  attacker,  f t  
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g 32.2 ft /sec2 

M miss, or distance between rocket  and  target a t  impact time, ft 

p,q,r  angular  velocity components of the  airplane,  radians/sec 

R present  distance between ta rge t  and attacker, f t  

S Laplace  transform  variable,  l/sec 

T time-to-go,  duration of time from the  present   unt i l  impact time, 
sec 

t f rocket  travel  time or time  of  firing,  sec 

t m  time between the  beginning of a target  maneuver and  impact time, 
sec 

V speed of attacker or target ,   f t /sec 

x, Y position  parameters  of  attacker or t a r g e t   i n  an  earth  reference 
system (sketch  (c)) ,  f t  

a angle of a t tack of attacker  airplane,  radians 

7 attacker 's   velocity  direction  angle  with  respect  to an earth 
reference  (sketch ( c )  ) , radians 

A t  duration  of  acceleration  pulse of target  maneuver, sec 

0 target  velocity  direction  angle  with  respect  to an earth  refer-  
ence  (sketch  (c)),  radians 

5 heading  angle  of  radar  antenna  with  respect t o  an  earth  reference 
(sketch  (c)) ,   radians 

R r a t e  of rotat ion of radar  antenna  coordinates,  radians/sec 

l ,2 ,3   labels  of  any  right-hand t r i a d  of unit vectors  (as  subscripts, 
the components of a vector  associated  with  the  pertinent  unit 
vectors) 

(-1 vector  quantity 

ANALYSIS 

The simulation  described i n  reference 2 was used i n  analog computer 
runs of the  F-86D control-surface  tie-in (CSTI) system against-a  target 

: . ' . :;-. :?q# * ,  -.- 
" .  .,. ~. I - 5 , , ". ".. 
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executing  steady g maneuvers i n  elevation. The runs indicated  that  
large misses  could  be  expected in   a t tack ing  a target  so maneuvering. 
Furthermore, it was apparent  that  the dynamics of the radar and the   in te r -  
ceptor  control system, i f  modified  according t o  references 2 and 4, had 
r e l a t i v e l y   l i t t l e   e f f e c t  on the  magnitude of the  misses which was due 
fundamentally t o  improper predict ion  in   the  a t tack computer. To improve 
these  results,  new second-order  prediction  equations were derived 17hich 
reduce to  the  previous commands  when the   t a rge t  makes no maneuver, but 
vhich  enable  the  attacker t o  f ly   an-effect ively  s t ra ight- l ine  intercept ion 
against a t a r g e t   i n  a steady g maneuver. 

The  meaning of the  old  prediction  equations can be understood a f t e r  
inspection of sketch (a).  

Sketch (a) 

The quantit ies V a  and & represent  the  velocities of the  attacker and 
target .  The dis tance  re la t ive  to   the  a t tacker   t ravel led by a rocket is 
designated  by H. The relat ive  posi t ion of the   t a rge t  from the  attacker 
at any  time i s  represented  by R. If the  attacker and ta rge t  each fly 
i n  a ' s t r a igh t   l i ne ,   t hen   i n  a time T, they   t rave l  a distance VaT and VtT, 
respectively. From the  diagram, then TaT + H.+ E = E + VtT, where E, 
the  miss, closes  the  vector-polygon. Taking a = vt - Va, one can m-ite 
the  equation a + P = + TR. 

- 

- 

The new prediction  equations were derived after it was recognized t h a t  
the  miss equations mechanized in   the  present  E-4 system  can  be  considered 
a Taylor's  expansion of the  separation of the  target  and the  interceptor  
around  impact time.  Second-order  prediction  equations are obtained  simply 
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by  incorporating a term of  higher  order i n  time-to-go, T. Instead of 
M + P = E + Tg, the  equation becomes a + = R + T? + (T2/2)$. The 
first and  second rates of  range  of ta rge t  from attacker  are  represented 
by 2 and E. The quantity T, the  time-to-go, i s  the  length  of  time from 
"now" until rocket .impact. 

- 
.. 

The  new equation, when expressed in  radar  coordinates, i s  given  by 
the  following set of equations which are   der ived  in  appendix A. 

M 1  = R - F cos A cos E + T (1 + 2 A) k - - R(Qz2 + Qg) T2 
2 a t  2 

M 2 = F s i n A + -  ( 1 + - -  E 2) R2& + - T2 RQlS22 
R 2 

-% = F cos A s i n  E + (l + 2 ~a x) R2Q2 - 2 T2 Ri l l& 
R 

The relationship between airframe and radar  coordinates i s  indicated  in  
sketch (b).  The radar  coordinate system, with unit vectors T, P,  3, is  

obtained from the  airplane  coordinate system ' (with  unit  vectors ia,  2a, 3a)  by first ro ta t -  
ing through the  angle A. about the 3a direction, 
then  by  rotating  through  the  angle E about 
the 2 direction. 

- 

When a l l  motion  of the   t a rge t  and attacker 
i s  constrained t o   t h e  same ve r t i ca l  plane,  the 

3a azimuth component of miss, M2, 'becomes zero. 
Sketch (b) The other  equations,  the  time and elevation 

components of miss, become 

M 1  = R  - F COS E + T  ( 1 + - -  E 2) k - 2 T2 RQz2 

-M3 = F s i n  E + - 13- -- 
T' R ( 2 at  ').R2i22 J 
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The significance of the  various terms i n  equations (1) becomes  more 
evident i f  t he  equations  are  expressed i n  a fixed  coordinate system. 
With the  definit ions  indicated i n  sketch  (c), 

t he  equations take the  form 

Mle = -F cos(y-s)+x cos k+y s i n  E+T(k cos E+? s i n  E )  + 1 
T2 - (2 cos k+j; s i n  E-) 2 

M2e = -F sin(y-()+T($ cos 5-k s i n  E )  + 

J 
where x = xt-x,, y = yt-ya. The quantit ies Va, xa, ya,  and 7 specify 
attacker speed, position, and heading. The quantit ies V t ,  xt ,   yt ,  and 8 
specify  the  target speed, position, and heading. %e angle 5 specifies 
the  heading  of the radar which i s  mounted in   the   a t tacker  and points 
toward the  target .  In the  two-dimensional  system  under  consideration, 
the  system consists of the  time-to-go, or simply, the time  channel and 
the  elevation channel. The time  channel  determines the  proper  instant 
at which t o  f i re  the  rockets. The elevation  channel  determines  the  proper 
normal acceleration of the  interceptor.  

The miss equations (1) or (2) are not  the  appropriate  expressions 
for  use as commands to  the  airplane-autopilot  system. Experience showed 
tha t  a system  using them as commands w i l l  be  unstable. That portion of 
the  re la t ive  accelerat ion due to   the   in te rceptor ' s  own motion must be 
removed from them and the  remaining signals  used as the commands: 

,- 

. .  
I 

i 

I 
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Sle = -F cos(y-{)+x COS E+y s i n  6+T(2 COS 

- (%cos  E+j;tsin 6 )  T2 
2 

= Mle + - (jraCOS 6+jiasin 6 )  T2 
2 

S2e = -F sin(y-E)+T(j, COS 6-f s i n  6 )  + - T2 
2 

T* = M2e + 2  COS E-jrasin E )  

When written  in  the  radar  coordinates,  these  equations become 

SI = R-F COS(E"U)+T~~ + - [E-RR2+Vaf sin(E+a)] T2 
2 

S2 = F sin(E+a) + (l. + 5 ~a x) R2R + 2 T2 
R 

When the  interceptor performs  according to   t hese  
miss equations  are  said  to  be  nulled  through  the 
geometry. '' 

Vai. cos (E-) 1 (4)  

command equations,  the 
action of the  "outer-loop i 

The resul ts  of  numerical  calculations made using  equations (4)  a re  
shown in figures 1 and 2. They can be  contrasted  with  the  results com- 
puted  with  the same equations minus the terms i n  T2, which are shown i n  
figures 3 and 4. The computation assumes that   the   interceptor   turns  a t  
a rate  proportional  to  the  elevation command without  any dynamic effects;  
t ha t  is, the  airplane-autopilot  loop is assumed perfect. The speed of 
the  interceptor, Va, i s  taken t o  be 1,000 feet   per second; tha t  of the 
target,   800-feet  per second. The target  begins  turning at the   ra te  of 
0.05 radian  per second a t  the  beginning of the  calculation and is  at tha t  
time 4,000 fee t   d i rec t ly  ahead  of the  interceptor. The value of F i s  
1,500 fee t .  

Figure 1 shows the  path  taken  by  the  interceptor when flying  against 
a target  flying  the  course *shown in   the   f igure .  The interceptor   t ra jec-  
to ry  is  nearly a s t r a igh t   l i ne  aimed at an  impact  point  predicted immedi- 
a t e ly  by i ts  second-order attack computer. The path  flown  by the 
interceptor  with a f i rs t -order   a t tack computer i s  curved ( f ig .  3).  I n  
t h e   l a t t e r  case,  since  the impact point  predicted a t  any time l i e s  along 
theatarget 's   f l ight  path a t  tha t   ins tan t ,   the  impact point keeps  changing 
i t s  position. The interceptor,  therefore, must  maneuver continually. 

In figures 1 and 3, the   l ines  connecting the  two fl ight  paths 
represent  the  interceptor 's   l ine of s igh t   to   the   t a rge t .  The sequence 
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of l i n e s   i n  each figure  provides a t ime  history of the  angle between 
t h i s   l i n e  and the  interceptor's  path. A comparison of the  behavior of 
th i s   l ead   angle   in   the  two figures shows tha t  it varies  considerably i n  
the  case  of  second-order  prediction, and  remains nearly  constant i n   t h e  
case of first-order  prediction. 

Figures 2 and 4 show the  t ime  histories of the  terms  of  equations (4)  
from the  computation. The terms of the  f i rs t -order  command system ( f ig .  4) 
are   seen  to   be much smoother. The magnitude of the  acceleration terms, 

- T" (E-RQ"+V,T s i n  E )  and T R2Q+Vaf cos , in   f igures   2 (a)  and  (b) , 
2 

however,  shows that  they  are  not  negligible,  a fact   graphical ly   i l lus-  
t ra ted   by   d i f fe rence   in   in te rceptor   f l igh t   pa ths   in   f igures  1 and 3. 
Figures  2(  c) and (a) show the  important  influence of  each  of the compo- 
nents of the  acceleration terms; none of them can be  neglected  without 
a serious  modification of the  shapes of the  acceleration  terms. 

TEST EQUIPMENT AND PROCEDURE 

In   t he  previous  section, a possible  set  of second-order command 
equations was obtained whose use  should  increase  the  effectiveness  of  an 
interceptor  at tacking a ta rge t  which i s  turning a t  a steady rate. The 
analysis, however, neglected a l l  those  transient dynamic effects  with 
which the  designer of an  actual system must cope. Since  experience  has 
indicated that results  of  studying a dynamic problem on an  electronic 
analog computer agree  quite  well  with  results  obtained i n   f l i g h t ,  and 
since  the methods of mechanizing the  prediction  equation  for an analog 
computer parallel   those  available  to  the  designer of  airborne hardware, 
it i s  useful   to   invest igate   the complete dynamic system on an  electronic 
analog computer. The remainder  of th i s   repor t  i s  concerned with  an ana- 
log  simulation  to determine i t s  s t a b i l i t y  and i t s  effectiveness  under 
varied  conditions. The present  section  describes  the  simulation as set 
up on an  Electronic  Associates  analog computer. 

Simulation of Automatic Interceptors 

The simulation i s  a modification of the  simulation  of  the F-86D CSTI 
system described i n  reference 2. The simplified  block diagram (fig. 5 ) ,  
adapted from this  reference,   indicates that the  system  can  be  divided 
in to   f ive   par t s :  radar, at tack computer, attack  coupler,  airplane- 
autopilot  loop, and geometry. The radar,  being mounted on the  interceptor  
and receiving  reflected  signals from the   t a rge t ,  measures the  range,  range 
rate,  position, and angular  rate of t he   l i ne  of sight from the  interceptor  
t o  the   t a rge t  and provides computer. The at tack 
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computer is an  analog  device which operates on the  radar-furnished 
quant i t ies   to  compute a predicted  value of miss by means of those miss- 

i s  the  function of the  attack  coupler  to  process  the  predicted miss  values 
provided  by  the computer i n to  a form that  the  autopilot  can use as commands 
to   dr ive  the  a i rplane  controls .  It computes the normal acceleration 
required and  bank-angle e r ror  of the  interceptor.  The airplane-autopilot 
loop,  by  properly  reacting to  the  coupler commands, banks and accelerates 
to   br ing  the  predicted miss t o  zero. The box marked "geometry" i n   t h e  
diagram  of f igure 5, as far as  the  electronic  analog computer i s  concerned, 
contains  that  assortment of operations on the motion  of the  two airplanes 
which provides  the  information on their   absolute  and relative  posit ions 
relevant   to   the problem. 

' , .  prediction  equations  described  in  the  previous  section on Analysis. It 

The iresent  study  required two basic changes in  the  simulation 
described i n  reference 2: the  a t tack computer was expanded t o  include 
the  operations  necessary  to  obtain a second-order  prediction  of miss;  and 
the  geometry vas diminished so a s   t o  f i t  t h e   t o t a l  problem on the two 
analog-computer  consoles  available.  For  geometric  simplicity,  the motions 
of the  interceptor  and target  were confined t o  a single  plane  containing 
the   ve r t i ca l  (i .e. , a t a i l  chase). Although this   constraint  i s  drastic,  
it does not  invalidate  the  conclusions of the  report   for two reasons. 
I n  the  first place,  equations (1) of the  previous  section show what i s  
needed analytically  for  the  extension of the miss predict ion  to   three 
dimensions, so that  the  extension may be made i n  a straightforward, though 
physically  complicated,  fashion.  In  the second  place,  preliminary  unre- 
ported trials indicated  that   the most serious prob1,ems of s t a b i l i t y  
pecul iar   to   the second-order  prediction were encountered  during  attack 
from the  nose or t a i l  of the  target.   Figure 6 i l l u s t r a t e s   i n  schematic 
form the  geometry mechanized f o r   t h e  problem. 

The geometric  constraint  decreased  the  requirements  of  the  .other 
four boxes shown in   f i gu re  5.  The block diagram  of f igure 7 depicts  the 
attack  coupler and the  airplane-autopilot  loop. The constraint  reduces 
the  required channels from  azimuth  and elevation  to  elevation  alone, as 
far as  airplane performance is  concerned. I n  the  attack computer, only 
two channels a re  needed, the  elevation channel,  and the  time  channel. 
These channels a re   i l l u s t r a t ed   i n   f i gu res  8 and 9. By comparison of the 
mechanization  of first- and  second-order  prediction,  these  figures show 
the  increase  in  operations needed f o r  second-order miss prediction. The 
radar  simulation can also  be  simplified.  Since  not  only  the  geometric 
reduction  but  especially  the imprcvements reported i n  reference 2 have 
removed the  radar as a possibte  source of f l ight   path  instabi l i ty ,  a radar 
transfer  function of uni ty  was used in   the  present  work f o r  both  the 
first- and  second-order  systems. 



Simulation of Miss 

The equations  and method for  obtaining  the  quantities from which the  
distance  of miss was calculated  are  described  in  appendix B. A number 
of l imitations on the   actual  motion  of rockets was made which simplified 
the computation  without  invalidating  the system  performance  comparisons 
described i n  this  study. These limitations  follow. A single  average 
rocket i s  f i r e d   i n  any  pass on the   target ,  and f l i e s   i n  a straight l i n e  
with a known average  velocity  along  the  direction  tangent  to  the  path of 
the  interceptor a t  fir ing  t ime. I ts  distance from the   t a rge t  i s  evaluated 
exactly 1.5 seconds a f t e r  it has been f i red .  This distance i s  the  value 
of miss use2 in   t h i s   r epor t .  

RESULTS ANT) DISCUSSION 

The considerations i n  this section are divided  into two parts. Into 
the  first f a l l  the  considerations  about mechanizing the  prediction and 
command equations so as t o   i n s u r e   s t a b i l i t y  and smoothness of the   in te r -  
ceptor  operation. The pract ical  system, unlike  the  theoretical  one studied 
i n   t h e  Analysis  sectioqhas  certain  transfer f'unctions tha t   a r e  more or 
less  f ixed. Furthermore, in  taking  the  derivative  necessary  for  the  pre- 
dictions, new transfer  functions must a r i se .  Thus, what  must be done f o r  
s t ab i l i t y ,  what can be done t o  improve s t ab i l i t y ,  and what can  be done t o  
improve the  response  are  questions  considered first. 

Once a s table  and reasonably fast system  has  been  secured,  the  next 
question is  tha t  of i t s  adequacy as a predictor system. In t he  examina- 
t i on  of this  question, first- and second-order  prediction  systems will be 
compared. The basis  of comparison will be  the  distance  by which the  
rockets miss a maneuvering ta rge t .  

S t ab i l i t y  

A s  has been  mentioned in   t he   s ec t ion  on Analysis,  the  primary  factor 
i n  achiev ing   s tab i l i ty   in   the  system i s  the  removal of t he  ownship compo- 
nent of maneuvering acceleration (Vaf)  from the  prediction  equations  before 
submitting them as c,ommands to   the   a i rp lane ' s   au topi lo t  and  time  servo. 
Figures 10 and ll indicate the behavior of t he  system  under changes i n  
the amount of VaY i n   t h e  command. On t he   t e s t s  from which these  time 
h is tor ies  of Vaf were taken,  the  interceptor f l e w  against a ta rge t  ini- 
t ia l ly  6,000 fee t  ahead. The interceptor  speed was 1,000 fee t   per  second; 
ta rge t  speed was 800 feet   per  second. A t  20 seconds t o  go (before  pre- 
dicted impact of  rocket  and target) ,   the   target   p i tched up at the  rate 
of 0.06 radian  per second, which corresponds t o  a maneuvering acceleration 
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The time  histories of f igure 10 indicate  that   the  presence  in  the 
commands of a component of ownship acceleration normal to   the  radar   l ine-  
of-sight  (the  prediction  equations  are  written  in  radar  coordinates)  acts 
in   the   sense  of a negative feedback. The l e s s  i t s  removal, the  greater 
the  feedback. The sequence  of  time h is tor ies   in   the   f igure  shows tha t  
progressive removal of amounts of the feedback  increases  the  effective 
forward  gain  of  the  airplane system as far as   the first peak of the  
response i s  concerned. The period of the   osc i l la t ions   in   f igure  lO(a) 
shows the  effect  of the  interceptor-target geometry on the  period of the 
system i n   t h i s  case. On the  basis  of t h e   t e s t s  from which these  time 
h is tor ies  were taken, it appeared that  the  best  response  occurs  if 'about 
30 percent  of  the ownship acceleration  (corresponding t o  K = 0.7 i n  
f ig .  8 (a ) )  i s  l e f t   i n   t h e   e l e v a t i o n  channel. With t h i s  amount of  feedback, 
the  response i s  as shown in  f igure  1O(c).  

During the  runs from which the time h is tor ies  of f igure 10 were taken, 
as much omship  acceleration  as  possible was  removed from the  time  channel. 
Leaving any ownship acceleration  in  the  t ime channel  has a deleterious 
effect  on t h e   s t a b i l i t y  of the  system.  Figure 11 shows a sequence  of  time 
h is tor ies  of Vay during runs with  progressively  less ownship accelera- 
t i o n  remaining i n   t h e  time  channel  (corresponding t o  changing the  value 
of K from 0 t o  1 i n  f ig .  9( a)  ) . I n   t h i s  run, 30 percent of the ownship 
acceleration component was le f t  in   the  e levat ion channel. But t h i s  time, 
the   e f fec t  on stability was  more severe. 

Adjustment of computer lags.  - Once the   bas ic   s tab i l i ty  of the  system 
has  been  secured  by  proper removal of olamship accelerations,  the  choice 
of the  various  lags  in  the  time and elevation computer loops can be  inves- 
t igated.  The transfer  functions  of  the  differentiations govern the  values 
of o ther   l ags   to  be inserted. The value of 1 second for   the  time  constant 
of derivative  process  yielding E (shotm in   f i g s .  8 and 9 )  was chosen 
because the  largest   value of the  effect ive numerator  time  constant, T/2, 
i s  10 seconds. A lead-to-lag  ratio of 1O:l is  usually  considered a rea- 
sonable compromise between response  speed and  induced noise. Attempts t o  
vary   th i s  time  constant  as a function of T from 1 second t o  a small 
value  not  only  led  to  considerable complexity, but  also  provided l i t t l e  
success. The other  terms i n   t h e  command equations were put  through lags 
t o  match them to   the   d i f fe ren t ia ted   s igna l .  I n  the  time channel, the 
matched s ignals   are  R2, Vaf s i n  E, and F cos E. The range, R, varies 
slowly enough tha t   t he   l ag  i s  unnecessary. In  the  elevation channel, 
the  matched s ignals   are  Vay cos E and.(F/T)sin E. A s  shown i n   f i g -  
ure 8(a), a t i m e  constant of 2 seconds  proved t o  be a be t t e r  choice fo r  
the  la t ter   quant i ty .  
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Elevation dead  zone.- Test runs with  the  attack computer arranged as 
described above showed adequate s tab i l i ty   aga ins t  a step  target  accelera- 
t ion.  However,  when the  target  did  not maneuver, the  interceptor  had a 
tendency t o  wander, with  an  amplitude  of normal acceleration which was 
small at long  and  short  interceptor  ranges and la rger  at intermediate 
ranges.  Insertions  of a small dead zone 2 ft /sec2 wide in   the   e leva t ion  
acceleration  terms removed t h i s  tendency. The effect  of the  dead zone i s  
a small uncertainty  in   the  predicted normal relative  velocity,  correspond- 
ing   to   the   no ise   l eve l  of the  electronic computer elements as amplified 
by the  process of different ia t ion.  No such noise problem arose i n   t h e  
time  channel. I n  fact ,  it was found possible  to  increase  the  gain of the 
accelerat ion  term  in   this  channel from T2/2 t o  T2. 

Miss Evaluation 

After the  various  parts of the  a t tack computer had  been adjusted i n  
the manner just  described, it was desired $0 compare the performance  of 
the second-order  prediction  system with tha t  of the  f i rs t -order  system 
by means of the  rocket miss. There a r e  four se r ies  of tests i n   t h i s  
evaluation program. I n  the  first three  ser ies ,   the   target   a i rplane  per-  
formed a step  acceleration maneuver at some time  during  the run. In the 
last  ser ies ,   the   target   s tar ted  pi tching upward a t  some time  during  the 
run then, af ter   var ious  f ixed  intervals  of time, resumed steady  straight 
f l i g h t  (at a constant  angle  of  climb). Such a maneuver corresponds t o  a 
pulse  target  acceleration. 

In the  first and  second ser ies  of tests, t he   t a rge t ' s  normal 
acceleration change was s e t  a t  1, 1.5, and 2 g ' s   ( c o r r e s p o n ~ n g   t o  
heading-change ra tes  of 0.04, 0.06 , and 0.08 radian  per  second). In the  
first ser ies ,   the  limits that   exis t   in   the  usual   accelerat ion command 
system's  elevation  channel were removed. The resu l t s  of this   ser ies   then 
establishes  the  capabili ty of the  second-order  system i n  comparison with 
the  f i rs t -order  system. 

i 

Figure 12 shows the   resu l t s  of t h i s  ser ies  of runs. The ordinate in 
the  f igure i s  the  elevation miss per g of target  maneuvering acceleration. 
The abscissa  indicates  the  length of t ime  the  target maneuver lasted,  from 
the  time it began u n t i l   t h e  end of the  run. The run ended 1.5 seconds 
after  rocket  f ir ing  t ime. Rocket firing  time  occurs when the  time-to-go, 
given by the  output  of  the time servo, i s  1.5 seconds. The distance of ! 
the  rockets from the   t a rge t  1.5 seconds a f te r   f i r ing   t ime i s  taken  to   be 
the  rocket miss, and i s  resolved  into an elevation component and a time 
component of miss. Thus, an  elevation component of miss plotted a t  
t m  = 8 seconds is  the  rocket miss a f t e r  a run i n  which the   t a rge t  
maneuvered during  the last  8 seconds. 

-T ' 
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The misses result ing from runs against a l l  three magnitudes of target  
acceleration were suff ic ient ly   proport ional   to   the magnitude  of the normal - 
acceleration change tha t   t he   r e su l t s  of  each command system defined  the 
s ingle  curve shown  when the  ordinate   in   the  f igure was used.  Figure  12(a) 
shows t h e   e r r o r   t o  be  expected  of a f i rs t -order  system. The improvement 
t o  be  expected  by  using a second-order  system is  shown by comparison of 
the  curves in   f igures   12(a)  and (b). The initial r i s e   i n   t h e  curves, up 
t o  1.5 seconds, is due to   the  dis tance  the  target  can  climb  during the 
time the  rockets are flying. A maneuver begun during  this  period  has no 
effect  on the  interceptor,  which has  already  fired i t s  rockets. The miss 
curves  keep rising  during  the  time  the  interceptor becomes aware of the 
maneuver and  begins t o  respond. The curves reach a maxim when the   in te r -  
ceptor  begins t o  outclimb the  target.   Since  in  the second-order  system 
the  acceleration commanded of the  interceptor does not  cease un t i l   t he  
interceptor i s  headed t o  a rocket impact point  predicted on the   bas i s   tha t  
the   t a rge t  will continue t o  maneuver a t  i t s  present  rate,  the miss  curve 
drops t o  a small value after about 5 seconds  of maneuvering. In   t he  first- 
order system ( f ig .   12(a) ) ,  however, since  the  interceptor  tends to point 
t o  an  impact  point  along  the  tangent to the   target ' s   f l ight   path,   the  miss 
remains proport ional   to   the  ra te  a t  which t h i s  impact point i s  changing. 

The effect  of  limiting.-  Figure 13 i l lus t ra tes   the   e f fec t  of l imiting 
the  interceptor 's   acceleration command.  The limits used in   t hese   t e s t s  
res t r ic ted   the   to ta l   acce le ra t ion  of the   in te rceptor   to   s tay  between +3g 
and -1g. Figure  l3(a) shows that   s ince  the commanded acceleration of the 
f i rs t -order  system i s  re la t ive ly  mild,  these  limits do not  affect   the 
interceptor 's  performance un t i l   t he   t a rge t  ' s acceleration approaches the  
l imi t  magnitude. Since  the  interceptor cannot  head off a target  which 
has a maneuvering acceleration  equal  to  the  incremental  acceleration 
allowed the  interceptor,   the miss increases  with maneuver duration. 

U 

This same effect  i s  not iceable   in   f igure l3(b) for  the  case of the 
2g step  target  acceleration. For 1 and l . 5 . g ' ~  of target  acceleration, 
the  miss  curves return more slowly  toward  zero  under  conditions of limited 
acceleration  capabili ty.   If   unlimited,   in  the 1.5g  case, the  interceptor 
attempts t o  pu l l  a maximum of 7 g ' s  when the maneuver begins a t  long  range. 
This i s  a peak, however, which remains above the  allowed  incremental  value 
of 2 for   only about 1 second. 

Effect of rocket  speed.- It was noted in   the  discussion i f  figure 12 
tha t   t he  miss curves  rose  during the  first 1.5 seconds  because  during t h i s  
time  of  rocket f l ight   the   interceptor  had no power to   correct   the   rocket ' s  
f l ight  path.  Reducing t h i s   f l i g h t  time, Tfhich corresponds to increasing 
the  rocket  average speed,  reduces the  t ime  avai lable   for   the  target   to  
evade the  interceptor. Consequently, it reduces the  misses f o r  both first- 
and  second-order  systems, as indicated  in   f igure 14. Since  here,  as i n  
a l l  the  other  tests,   the  value of F, the  distance  traveled by the  rocket 
re la t ive  to   the  interceptor ,  i s  fixed a t  1500 feet ,  a time of f l i gh t  6. 

t, = 0.75 corresponds t o  an  average  rocket  speed of 2000 feet   per second 



with  respect to   the   in te rceptor ;  tf = 1.00 corresponds t o  an average 
rocket  speed of 1500 feet   per  second. A l l  the  runs which established 
the curves sholm were made against a l.5g  step  target  acceleration  with 
no l imi t  on the  acceleration command. 

Pulse maneuvers.- In   t he   f i na l   s e r i e s  of tests,   the  interceptor  f lew 
against a pulse  target  acceleration. During these tests, the  acceleration 
command was not  limited, and the  rocket  flight  time was res tored   to  
1.5 seconds.  Figure 15 compares results of the first- and second-order 
systems for  pulse  widths At = 4-1/3, 6-1/2, and 8-2/3 seconds. The 
curves of figure 12 a re  added to  represent  the  l imiting  case of wide 
pulses (At + m). The curves i n  the  figure  indicate  the  trend  with change 
i n  At .  The new curves  follow  those  for a step  acceleration until the 
abscissa i s  about 1.5 seconds longer  than  the  pulse  width.  This  time 
duration i s  due t o  rocket  f l ight  t ime. The curves for   the   f i r s t -order  
system ( f ig .  l5 (a) )  drop t o  about  zero, as they  should,  since  the  target 
i s  not maneuvering f o r  some time  before  the end of the  run. After   a l l ,  
i n   t h i s  system, when the  target  stops  accelerating,  the  interceptor  has 
only to  stop  accelerating  too,  for under these  conditions  of no maneuver, 
i t s  predicted impact point  has  stopped moving. In the  second-order  case, 
on the  other hand (f ig .   l5(b)) ,   the   interceptor   has  developed a large 
lead  angle on the   t a rge t   to   b r ing  it to  the  predicted  point.  Between the 
time  the maneuver has  stopped and the  time  the  interceptor  has  corrected 
i t s  heading t o  a new point, a sizable miss  occurs.  This miss is  largest  
for  the  smallest   pulse  width  because  for  this  case  the  difference  in 
heading  can become largest   for,   al though  the  interceptor  predicts  the 
same impact point as f o r  maneuvers of  longer  duration,  the  target changes 
i t s  heading l e a s t   i n   t h e   s h o r t e s t  maneuver. To a second-order  system, a 
maneuver l a s t i n g   i n   t h e  neighborhood  of 3 or &.seconds i s  the most serious 
because the   d i f fe rence   in  heading  can  be made greatest .  A s  A t  becomes 
smaller, the  interceptor i s  given  less  t ime  to  reach i t s  predicted  heading. 
A s  At  becomes longer,  the  target  heading  angle  increases and the 
interceptor 's  remains constant. 

On the   basis  of these  studies, it i s  clear ly  
in te rceptor   to  have a second-order command system 
going t o  maneuver f o r  less than, say, 5 seconds. 
between 3 and 5 seconds, the second-order command 

advantageous fo r   t he  
unless  the  target i s  
For maneuvers las t ing  
system i s  disadvanta- 

geous.  For maneuvering of shorter  duration,  either system seems equally 
good. If only one kind  of  interceptor command system were available, 
and the  target  became aware of the  attack,  then  the  strategy of t he   t a r -  
get  would be  obvious. I f  both  types  of  system are  available,  and espe- 
c i a l l y  i f  an  attack were mounted by more than one interceptor ;   the   target  
would f ind itself i n  a more  awkward position. 

I 
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SUMMARY OF IE(ESULTS 

Against  steady maneuvers, the  effectiveness  of  automatic  interception 
with  f irst-order  prediction  deteriorates.  The deterioration i s  not sub- 
s tant ia l ly   lessened by improvements i n  system  response,  whether of the 
airplane-autopilot  loop, 'or radar  tracking  loop, or both. A reasonable 
set of command equations can be  devised  by which the  interceptor  effec- 
tiveness does not  deteriorate  in  the  presence  of  target maneuvers of 
steady  turning  rates.  Great  care, however, i s  required i n  mechanizing 
the.command equations  because  the miss distance is  qui te   sensi t ive  to   the 
accuracy of  computation. It seems tha t  normal accuracy  requirements 
sa t i s fy   as  far as   the magnitudes of added s ignals   are  concerned. But 
extra  care must be  exercised t o  match relat ive  t ime  shif ts  of added 
signals. 

Both interceptor  prediction and command channels are  important from 
a stabi l i ty   s tandpoint  and from a terminal  accuracy  standpoint. 

For s t ab i l i t y ,  as much interceptor  acceleration  as  possible must be 
removed from the  time  channel  equation. To leave some interceptor  accel- 
eration i n  the  elevation channel command equation i s  not  harmful.  This 
residue is  equivalent to   addi t iona l  feedback and has  the  effect of reducing .. 
the  channel  gain and  system  response. 

Limiting  the  acceleration of the   a t tacker   has   l i t t l e   e f fec t  on the 
misses  obtained  by  an  attacker  under  first-order commands, up t o   t a r g e t  
accelerations  of  the magnitude  of the ' l imits .  It increases  the  misses 
obtained  by  an  attacker under  second-order commands, however. Wtth the 
l a t t e r  system, therefore,  the  limits  should  be  set  as wide as i s  consonant 
with  structural  and buffeting  requirements. 

Results  indicate  that ,   with  f irst-  and second-order commands, the 
accuracy  of  the  system i s  generally improved the  higher  the  average  rocket 
speed. 

Ames Research  Center 
National  Aeronautics and Space Administration 

Moffett  Field, Calif., Aug. 22, 1938 
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APPENDIX A 
- 

DERIVATION OF SECOND-ORDER  PREDICTION 

AND COMMAND EQUATIONS 

In   t he  Analysis  section  of  this  report,  the  vector  equation  for miss 

has  been  given as + P = + 6T + ET2/2. This appendix  contains first 
of al l ,  the  derivation of the  expression for miss i n  radar coordinates 
of three dimensions. Then t h i s   t r i p l e t  of  equations i s  reduced t o   t h e  
pa i r  used i n   t h e  body of the  report .  Next, the two-dimensional expression 
for miss is  derived i n  Cartesian  coordinates.  Finally,  the two-dimensional 
equations  of command are  obtained. 

Three-Dimensional Prediction  Equation 

The radar coordinate  system is  defined  by  the  triad of unit  vectors 
shown with  their   or ientat ion  in   sketch (a). The unit  vector i falls along 

ceptor  coordinates i s  shown i n  sketch (e ) .  The unit vector i a  shown i n  
this  sketch  defines  the  interceptor's  longitudinal  axis 

4 the  l ine-of-sight  direction. The relationship between radar and in te r -  

- - 
1 

P 

Sketch (a) Sketch ( e )  

The general  vector  expression for the  time  derivative  of a vector R 
- 

~ 

i n  a rotating  coordinate system is. R = - R+QxR. The first term on 
A -" 

a t  
the  right  expresses  the change rate of the  vector due t o  i t s  explicit   t ime 
dependence. The second term on the right expresses i t s  change r a t e  due 
to  the  instantaneous  rotation rate of the  coordinates i n  which it i s  given. 
Since in   the  present  problem R = fl only, 

- 
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t he  time  derivative  operation can be performed on the  vector R = - R + Q Z  at 

and 

Substituting  by means of equations ( A l ) ,  (A3), and (Ah) into  the  expression 
f o r  miss and separating  the  various components yield 

M1 = -Fl+R+Tg + - R - - R ( 522+5232 ) T2 .. T2 
2 2 

M 2  = -F2+TRG + - T2 - a R C ~ I  + - RG + - RQls22 T2 T2 
2 at  2 2 

& = -F3-TR522 - T2 - - a RQ2 - GQ2 + - R R I G  T 2  
2 at  2 2 

o r  

M1 = -Fl+R+T (1 + 5 &) R - 2 R(Q.~f+s23~) T2 1 
M2 = -F2 + x (1 + 2 A) R 2 G  + - T2 RQl522 

M3 = -F3 - (1 + - ~a -) R2& + - T2 R R 1 G  

R 2 at  2 

R 2 a t  2 

The vector F in  these  equations is the  distance  the  rocket  travels 
re la t ive   to   the   in te rceptor .  It has  been assumed in   t h i s   r epor t   t ha t  
H = FiIT only where iw i s  a unit vector  along  the  interceptor's  longitu- 
dinal  wind axis. Under conditions of no s idesl ip ,  P can be  expressed 
in radar  coordinates  through  the  relationship 
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s 

. i .  

One obtains from this   re la t ionship the equations 

F1. = F( cos E cos A cos a-sin E s in  

F2 = -F s i n  A cos a, 

F3 = F(sin E cos A cos a+cos E s in  

I 

Substitxting  these  expressions  into  equation ( A 5 )  and neglecting a, one 
obtains 

M 1  = R-F COS A COS E+T 1 + - - ( 2) f r  - 7 R(Sl2+Rs2> 
T2 

M 2 = F s i n A + -  ( 1+-- E 2) R2R3 + - R R l R 2  
T2 

R 2 

-b = F s in  E cos A + - ( 1 + -- 2) R2R2 - - R R 1 G  T2 
R 2 J 

The reduction of these  equations t o   t v o  dimensions is easily 
accomplished by se t t ing  i& = R 1  = A = 0. It follows that M2 = 0 and 

MI = R-F COS E+T (l + x A) fi - RRz2 
2 a t  2 1 
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Cartesian  expressions i n  two dimensions.- The quant i t ies   to   be 
employed i n   t h e  miss equations i n  two-dimensional Cartesian form are  
i l lus t ra ted   in   ske tch   (c )  . 

- 
2e 

i 

Sketch ( c )  
- 

A s  before, 1 is a unit  vector  along  the  interceptor-to-target  line of 
sight. The angle 5 i s  the  radar space  angle such tha t  = Sl which 
was wri t ten Sl2 above. The coordinates of the  interceptor  and target  
a r e  given  by  (xa,ya)  and  (x+,yt),  respectively. The vectors V a  and yt 
define  the  headings of interceptor and target  which are   or iented  in  
space  by  the  angles 7 and 8, respectively.  Finally; +-xa = x;  yt-ya = y. 
It should  be  noted  that,  by  the  definition of R and i, 

- 

- 
0 

X = R COS 5 

y = R s i n  5 I 
- 

Star t ing from equation M = -F+R+RT+R -, it i s  seen  that 
--L " T 2  

2 

Mle = -Fle+X COS 5+y s i n  E+T(% COS E+$ s i n  5 )  + - T2 (2 COS E+Y s in  E )  2 

= -FZe+T(jr COS 5-2 s in  5 )  + 2 ( j ;  COS 5-2 s i n  6 )  T2 I 
That  equations (Ag)  are   equivalent   to  (A7)  i s  shown by means of 
equations (A8) .  

Command equations.- The only  source of accelerat ion  in   the problem 
i s  the  heading changes of the two a i r c ra f t ,  Vaf and Vth. Hence 



Rewriting  equations (Ag) t o  illustrate. t h i s  dependence, one obtains 

From these  equations, it i s  seen  that i n  order t o  remove 

interceptor  acceleration,  the terms - T2 VaT s in (  E-7) and 

a r e   t o  be added t o   t h e  miss equations.  Returning t o   t h e  
as given i n  (A7)  and rea l iz ing   tha t  5-7 = E+a and M2e = 

2 

the  command equations 

M~ = R-F c o s ( ~ t a ) + ~ i i  + - T2 [ E - R ~ ~ + v ~ ~  
2 

-% = F sin(Eta) + - ( 1 + - '2 - :t) R2Q + 
R 

sin(E+a) 1 

rn2 

the   e f fec ts  of 

vay cos( 6-7) 
2 

form  of equations 
"3, one obtains 

- I Vay cos (E ta )  
2 

The inclusion of a in   the  interceptor   accelerat ion terms f o r   t h e  command 
equations i s  undesirable from a practical  standpoint.  Since it has  also 
proved  unnecessary, it was omitted i n  the  simulation  used i n  the  present 
study. 
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APPENDIX B 

DESCRIPTION  OF TRE EVALUATION OF MISS 

Since  the miss vector   in   this   report  is  the  separation between the  
rocket  and  target at some fixed  time, namely 1.5 seconds a f t e r   f i r i ng ,  
the  miss can be  expressed i n   t h e  following way 

In  this  expression, 7 is  the,  interceptor  velocity  plus  the  velocity of 
the  rocket  with  respect  to  the  interceptor: T = va+vm. . The equation ( B l )  
simply states tha t   t o   ca l cu la t e   t he  miss one follows  the  relative tra- 
jectory from some star t ing  point  until the  desired  time. Choosing tf, 
the   f i r i ng  time, as the  start ing  point 

Equations (B2) indicate  that  miss i s  evaluated  exactly 1.5 seconds a f t e r  
the  rocket  has been fired, and that  the  rocket  has such an  average  speed 
relat ive  to   the  interceptor   that  i t s  t ime  integral   over  this  interval 
is F. 

- 

Since  the  rocket i s  assumed t o   f l y  along a s t ra ight   l ine   t angent   to  
the  interceptor 's   f l ight  path at the   ins tan t  of f i r ing ,  it i s  convenient 
t o  express  equations (B2) in  the  coordinates of the  interceptor 's  wind 
system at f i r i n g  time.  Following the  notation  indicated  in  sketch  (c) 
(and recal l ing  that  E-7 = E-), and call ing  the unit wind coordinate 
vectors, iw, TIT, yw with  their  usual  orientation we f ind  

s t f f l .5  

Mlw = Q f ~ ~ s ( E ~ ) - F  + [ v ~ c o s ( ~ - B ) - v ~ ] ~ ~  
t f 

tf+l.5 
M3w = -R t  sin(E-) - 

f 
j' [Vtsin(y-e)  ]at 
t f 

The only  time-varying  quantity i n  equation (B3) is  the  angle 8. 

Because of lack of  analog equipment, the  computation  of miss compo- 
nents was done by hand. When T, the  predicted  time-to-go i n   t h e  time 



channel,  decreased t o  1.5 seconds, a pa i r  of integrators began integrating 
the  integrands in equations (B3) . Except for  the  angle 0 which continued 
the  target  maneuver, and the  integrat ions,   the  computer quantit ies were 
frozen.  After  exactly 1.5 seconds the  integrators and 0 were frozen. 
The quantit ies of i n t e re s t  were then  read. 

I 

." 

I 

F 
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Figure 1.- Trajectory of interceptor  with  second-order command against a ta rge t  performing a 
constant g pull-up maneuver. 

. . . , . - .. . 



26 

2€ 

- a  

+ -12 a 
Q) 
Y- 

- 0  
Y- 

-E - I  6 
+:: 

F 
-0 c -20 
3 c 

-24 

2 4 . 6  
Time, sec 

a 10 

(a) Time channel  terms. 

Figure 2.- Time h is tor ies  of terms of the second-order commands during 
the   t ra jec tory  of f igure 1. 
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(b) Elevation charnel "ms. 
Figure 2.- Continued. 
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(e> Acceleration term components in time channel. 

Figure 2. - Continued. 
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Figure 3.- Trajectory of interceptor  with  first-order command against a target  performing a 
constant g pull-up maneuver. 
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(a) Time channel  terms. 

Figure 4.- Time h is tor ies  of terms of f i rs t -order  commands during  the 
t ra jec tory  of f igure 3. 
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(b) Elevation channel terms. 

Figure 4.- Concluded. 
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Figure 5 .  - Simplified block diagram of automatic interceptor system. 

! .- . . . . .. . . . . . - ,..".". - . ". 



vt 

va I 
Ea - Et 

C -r a - E -k 
Resolution -- Resolution - d Resolution b 

-Rsz -* I - 
1"1 "p 

a = Vtcos(Ea-Et)  C = V t C O S ( E a - E t + a ) - V , ~ ~ ~  a 

b = Vt sin ( Ea-Et ) d = Vt s in (E , -  E t + a )  -Va sina 

t 

Figure 6.- Schematic block diagram of attack  geometry. 
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K 2  Elevator * h Airplane -Y 6.8s + I servo 

K,  = I f t  sec-Z/ft sec-1 K 2  = .0046 radian / f t sec-2 V, = I O 0 0  f t  sec" 

Elevator  servo  transfer  function: 
I radian/radian 

.00625s2 + .079s + I 
ALD = Commanded  acceleration 

Az = Measured  acceleration 

Airplane  transfer  function: 1.768 radian  sec-I/radian 

.0437s2 + ,0979s + I 

Figure 7.- Block diagram of attack coupler  and  airplane-autopilot loop. 



(a)  Elevation channel of second-order cormand system. 
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(b) Elevation  channel of f i rs t -order  command system. 
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(a) Time channel of second-order  command system. 
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(a) No Vay cos E removed. 

[b) 50 percent Vay cos E removed. 

(c) 70 percent VaF cos E removed. 
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(a) 100 percent Va? cos E removed. 

Figure 10.- Time h is tor ies  of interceptor maneuvering acceleration i n  
response t o  a 1.3g steady  target maneuver, i l l u s t r a t i n g  the effect  of 
removing ownship motion from the  second-order  elevation  comnd,  with 
a l l  ownship motion removed from the  time  channel. 
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(a) No Va-3 s i n  E removed. 

4 

0 
(b) 50 percent Vaf s i n  E removed. 

0 4 a 12 16 
Time, sec 

( c )  100 percent V,? s i n  E removed. 

Figure 11.- Time h is tor ies  of interceptor maneuvering accelerat ion  in  
response t o  a 1.5g ta rge t  maneuver, i l lus t ra t ing   the   e f fec t  of removing 
omship motion from the second-order  time  channel,  with 70 percent own- 
ship motion removed from the  elevation command. 
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(a) Interceptor  with  first-order commands. 
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(b) Interceptor  with  second-order commands. 

Figure 12.- Comparison of misses  resulting from automatic  interception 
with first- and  second-order commands against a ta rge t  maneuvering i n  
a steady g turn.  Interceptor  acceleration  capability  not  limited. 
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(a) Interceptor  with  first-order commands. 
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(b) Interceptor  with  second-order commands. 

Figure 13.- Comparison of misses  resulting from automatic  interception 
with first- and  second-order commands against a ta rge t  maneuvering i n  
a steady g turn.  Interceptor  acceleration  capability  limited. 
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(a) Interceptor  with  first-order commands. 
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(b) Interceptor  with  second-order commands. 
I 

Figure 14.- Comparison of misses  resulting from automatic  interception 
with first- and  second-order commands against a ta rge t  maneuvering i n  
a steady g turn  f o r  various  rocket  times  of  flight. 
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(a) Interceptor  with  first-order commands. 

(b) Interceptor  with  second-order commands. 

Figure 15.- Comparison of misses result ing from automatic  interception 
with first- and second-order commands against a ta rge t  maneuvering 
with 1.5 g's  acceleration  for  various  durations of time. 
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